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Taylor Series Expansion
If a function f(x) is infinitely differentiable at x = x,, we can express:
Brook Taylor -
f=a +ax—x)+aix-—x) +. .= Z ay(x—x.)"
Born: August 18, 1685

Municipal Borough of Edmonton To find the coefficients, initially, we put x = x,:
Died: November 30, 1731 a = flx.)
London, United Kingdom

Taking the first derivative gives:
Education: St John's College, Cambridge,

University of Cambridge Fl=a +va(x—x)+vace—x) +farv—x ) +...

Brook Taylor was an English mathematician who is best known so, a, = f'{x)
for Taylor's theorem and the Taylor series



Taylor Series Expansion

Similarly, we take derivative again:
Frx=vla +rlax—x )+ F x Yasv—x) + ...
Putting x = x, results in: \
ar = r—:j"l.r:}
In this way, we may conclude:
&

_ 0 e, inl
an = ) where M=

Eventually, we can write Taylor Series Expansion of f(x) at x = x, as:

“
flx) = Z %U(* x)!

n=r

Taylor Series Expansion

Also, we already know
d
et = et
a,x( )

So, the its Taylor Series Expansion is:

To give another example, recall that:

\

d ,. d - -
—[In(\ +x)] = () + x) —(V+x)" = =n(Y +x)
dx dx

Hence:
X X i Ll (7‘)»“ o
IV +x)=x—-—+—-—+...= ) ———
Yoy ¥ n

=
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Taylor Series Expansion

&

Now, we can write Taylor Series Expansion for other functions.

since
d . d .
—(sin x) = cos x, —(cosx) = —sinx
dx dx
So, we have:
< oy
siny=x = —
ﬁZ‘ (Yn+1)!
R E (=)
- =V ——t—=——+...
oS R 2 o

As Taylor Series Expansion of sin(x) and cos(x) at x = x,.

Order Symbols
Instead of saying that sin(x) tends to zero at the same rate that x tends to zero,
we say: PP
— Big Oh
sinx = O(x) as X — o
In general:
Fx) = Olg(x] as x— e
If
X
lim J& and o < |A| < o0
e g(x)
sinx = O(x) as X — o



Order Symbols

For example:
sinx = O(x) as X— e
. sin x
since lim—— =1
X

Other examples for x — 0

cos x = O(Y) lanx = ((x)

cosx—\ = 0(x") cotx =0(x")

PN ol
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Finite Difference Calculus

Defining “Forward Difference” Operator:

Afi=fi — £
A §— Truncation Error

F=SEerE

Truncation error is the difference between the derivative and its finite difference
Approximation.

For the “Forward Difference”:
T.E. = O(h) = O(Ax) as X— e

TR o
im — = Limited
e
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Finite Difference Calculus

Let's write Taylor Series Expansion for f(x + h) at x

N . 0
flx+hy = ;(,|)+M‘{,\:+f;—l,‘"'un t—|;‘“m+,,, "

So,

_fxth-fy kL0,

=TS S M
Truncation Error

[

Finite Difference

Collecting all terms of 0(h):

Fg= LU= S0 G Forward Difference
h

Let's re-write based on index notation:(h — 0)
fi = % +0(h)

Jior = fla+h), fi=f(x)

Finite Difference Calculus

Similarly for f(x — h) at Pwe have

" . 1
Fremi= 0= S - S "
So,

_ Jlx) - fle—h)
I

it W
[ = +Y7r‘m— ‘!T!,f"'[rJ+,,,

Finite Difference Truncation Error

Collecting all terms of 0(h):

fo-fe-n Backward Difference
i

fix= + Ol

Let’s re-write based on index notation:(h — 0)

fi—fis
h

fix) = +0th)
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Finite Difference Calculus

Finite Difference Calculus

Defining “Backward Difference” Operator: Let's re-write both Taylor Series Expansion at P

=fi— v . i
Vﬁ ﬁ ﬁ—\ Six =)= flx) = hf'ix+ :%f‘m- t—‘f"un .- "
. 7 Truncation Error . -
We have: v Flx+h) = flx)+ i+ %_,‘"'(.u + if—‘_,‘“‘{ )
5= % +Oth)
So,
" "o
f{r+l:)7f(.\—h):\'hf(xn?f X+, 3
We may write f'(x) explicitely:
= fle— B
j,(”:j(r+ 1) = flx =iy P
T 3
[ (| EEEING A
Finite Difference Truncation Error
13 14
Wi
oty 30

Higher-Order Derivatives

Finite Difference Calculus

S+ = fle=m Let’s take a look at these two Taylor Series:

Sy —————— —— ")+ ..
— ™ o A
Finite Difference Truncation Error S+ by = f+hf )+ ﬁf )+ Ff (e x(-2)
i 2): Th) Thy
Collecting all terms of 0(h?) Fervh) = f(x)+ ThF o ( rl\) o+ ( rr') P

w + O} Central Difference

f=

So, we have:

“TfxE )+ fx+ v = =[O+ R O+ R0+

Based on index notation we have: 5=
Solving for f'(x) yields:

Jla+ vy = flx+ )+ f(x) N

s = B Y o o g for 2V 4 i ;rf‘ o
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Higher-Order Derivatives

Higher-Order Forward and Backward Difference

Recall: Recall:
- » I
. Afi = fier = fi j{r+hJ=fu)+l:_f"(,\)+#f"(r)+ ﬁf‘”un, .
0,
N . X Solving for f'(x) gives:
MAL) = Afir = DS = fiox = firr = i = ) = fiox =Y i + f;
P = SO+ = fx)
. " . . ; h
Therefore, we can write forward difference for f”/(x) in operator notation _
R| fle+ vh) Y{(x+h] + fix) Lo + 0u)
aE ¥ [
= ot Oth)

Simplifying of this equation results in:
Similarly, backward difference for f"'(x) in operator notation would be:

P = =Y (x)+ Fflx+h) = flx+vh)

vh + 00
. _V'1h or:
K= o
—Tf+ i = fir
f= fi rﬁ, .ﬁrﬂg(h.)
17 18
Finite Difference Discretization Finite Difference Discretization
(~ Forward Difference  O(h) N /" Forward Difference O(h) N\
T o e o | e - J; fin r‘ fir | fior | fun
W= | -r| f | -
Wffixy= [ =] v )
'ff” Wiy =]t | =0T
Mron= ) v i + o) ( Central Difference  O() o N ( Central Difference  O(lr)
G el R A S L | g [ foes [ e Wi | ¥ || v [t | v | , T
¥y - - o L [ 2
PN NEIEIEIR ) - S AN s N
W) = N + O A ) = RS E + O*
RO . wrriy= | v Th [ [ e [ a [
( Backward Difference  O(h) \ MOPACTES IR el I - f Backward Difference  O(h) W= | v | ar | oA | e | vt | ar | -
i) = AT I B O I Y
Jit | Sie [ S [ S | S fioo e | e [t [dn [0
hfix) = -y \ Thitt = R \
() = Ve | rom ) = BRI -
T ) = Tol-vwrr -
Ko = il A B Bt e | v | | re [ ve | v | v
Fiay=| v | ¢ | 5 | =¢ |
\C J - J
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Examplel

If f(x) = e* find f'(1) using forward difference, choosing h = 0.1

. e —eV T oofVFF — Y, ¥YVATAT
S = # Ol V) = e O )
e/ s

[7(v) = v, aaanr Forward Difference

Using Central Difference:

" — et T, onFVFF — T, TOF0Y
PO = S # 0l W) = F T 0l
F'()) = Y, ¥YYAY Central Difference
Exact Forward Difference  Central Difference
Value 2.718282 2.85844 2.72282
Relative Error - 5.15% 0.17%

b ki,
V) i Rescuel st oY/

Example2
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If f(x) = sin(x) find f'(1) using central difference, choosing h = 0.2

SNV, Y) = sin(e,A)

(V)= — L 4L Of(=p¥)
foy Yoom [t=,¥)"]
Fin = ALAGLA S TA AL NN
. Y
Let's choose h = 0.1 . .
. sin(y, V) - sin(=,4) .
1) = +0[(=s\
Fo) CTOVEY) ((CFAMA
o/ ANY 0¥ — o, YATYYY
Fion= % =, 0
s

Let’s choose h = 0.05
sin( ), =0) — sin(=, 10)
T(es20)
o, AFYEYY — o, AVTEN S
ap\ =

fon= +0[(e, =0)]

fliy= a,0F00¥

23
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Examplel

Now, let's choose h = 0.05

fliy=-—-"——=
LI
_ T/AOYFON = Y, ADVYe

=Y, 10
)

Slope of line in f’- h? coordinate system is:

=R R

m

h=h, B -
So, we can find exact value of f'(x = 1):

= fl—mh} =Y, ¥YVAYAY

Example2

22

The exact answer is:
J(V)=cos(V) = o,0FeTe

Using the method introduced in previous example:

_Nh-n_R-K
TR -hT T K-

n

Which gives:

fl=fl—mh =c,0Fer1

24
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Example3
Consider f(x) = sin(10mx), find £'(0) by choosing h = 0.2
The exact answer is:
f(x) = Vemcos Yemx
So,
/() = Vomreos Yom(s) = ¥V, F104Y
s, T) = flo
fioy = LI oy
Forward Difference e . .
(e, ¥) = sin Ver(e -
:.sln\rrif] hlﬂ\l(l)_"o(q,”:.‘vlnﬂ .
oY oY
fla)= [l = flerm) Ol(=,7)]
Central Difference . ”"’:’ , .
_ sin vex(e,¥) —sin Vem(~2,¥) Ol = -
st
25
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Lewis Fry Richardson
Born: October 11, 1881
Newcastle upon Tyne, United Kingdom
Died: September 30, 1953
Kilmun, United Kingdom

Education: Bootham School, Newcastle University, King's
College, Cambridge, University of London,
Durham University

He was an English mathematician, physicist, meteorologist, psychologist and
pacifist who pioneered modern mathematical techniques of weather forecasting.

Is it possible to obtain the exact

Question ! ! 5
solution from numerical solution?

27
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Example3

Consider f(x) = sin(10mx), find f'(0) by choosing h = 0.2

The exact answer is:

o) = 08 .
f(x) = Vemcos Yenx Problem?

So, T=h

SF(e)=VemcosVem(e) = ¥V, F104Y +————

o T) = flo
Floy= 1M =IO gy
Forward Difference e . 7
_ sinem(e, V) —sinen(e) FO(e,¥) = sin¥m— o C
- oY ST Ty
(0,7) = fi=os
J*(,]=M+g|,=,rﬂ
Central Difference . Tt[w:: )
sin Vem(e,¥) = sin Yom(—o .
=B ),,:-" T o1 ) IG
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Richardson Extrapolation

¥ =Fxy)
¥ =fx)
)= [
) Mty oc h”
F@ =y +O) = v, + Ch+ M(h) s consnt
Analytical Numerical TE
Solution Solution o
h — hfy F(X) = ye(h/Y) + ChiY + M(h/Y)
—
X, x,#2h X, tnh
XyH/2 Von
"ttt
x, Xgt2(b2) X,72n(W2) 28
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Richardson Extrapolation Richardson Extrapolation

Second order approximation

S0 = uh) +Oh) = 32lh) + Ch + M) f@ =y O — c=1Z =y, ccam

hr
—_V \ —
Regardless of h“terms, C can be obtained as f=va+ fj r"’”h? = You + %
: h
i i ¥ Al \
By Replacing, C"in J= gy =g =y =)
F(x) = yealhfY) + ChIY
we have Higher order approximation
S = yeah/Y) + [¥ea(h/Y) = yu(h)] f =+ —— = f% ——> f(x) = yeulh{¥) + Clh/T)
Consequently, the error for step size of 42 can be determined as F=vu+ f=w h_ = Ve + lf - i,-
Yt TS = Yt o
ey I
f=o=r
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